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Normal Transmission-Line Networks and Their Lumped

LcPresentation

KHEE K. PANG

Absfract—A previous result [5] is extended and a new presenta-
tion is described for Richards’ transmission-line (TL) networks. The
new presentation is in a lumped LC f orm; therefore, classical analysis
and synthesis techniques are directly applicable.

The class of networks for which this presentation is possible is
studied in detail. This class of networks, called normal TL networks,
is found to be a necessary and sutlicient condition for driving-point
immittsnce functions to be rational positive real functions of
A =tsnh T@.

The effectiveness of this representation is further demonstrated
by applying it to graph-transformation analysis method. It simplifies
the procedure considerably and reveals additional physical insight
into the TL network.

1. INTRODUCTION

R

ICHARDS’ resistor-transmission-line (TL) network

[1] is essentially a hybrid distributed and lumped net-

work. The structure is distributed, but in the analysis,

the TL junctions are idealized into nodes. In frequency plane

X = tanh Tp, the TL stub may be regarded as a lumped induc-

tor or capacitor; but as a two-port, a unit length of TL

(unit line) is not a lumped component. The irrational factor

<1 –x’ in its transfer function renders it impossible to be

represented by finite lumped network.

If the unit length of TL is subdivided and X’ = tanh rp/2

regarded as the fundamental frequency, a unit line can be

presented by a lattice LC section (alternatively, a Darlington

C section) [1]. It is therefore possible to present Richards’

TL networks completely by lumped components. However,

such a presentation complicates the network structure and

doubles the number of elements in the presentation. This is not

acceptable to the circuit designer. To date, most TL networks

have been designed using A as the fundamental. frequency

variable.1

Thus earlier workers were resigned to the idea and

treated the unit line as a new “basic” component. Numerous

new analytic and synthesis techniques were discovered which

could accommodate this new element. Accompanying these, a

parallel set of TL network theories has also been developed in

order to justify the validity of each synthesis process.

Closer examination of this treatment reveals a disturbing

feature. On the one hand, lossless TL networks consist of

three basic components: L, C, and the unit line. On the other

hand, the driving point (DP) immittance functions of most

TL networks are positive real (PR) rational in k, in no way

different from those of a two-component lumped LC network.

The new basic element, the sole existence of which distin-

guishes a TL network from a lumped network, does not seem

to leave any imprint in the DP immittance functions. This
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1 A notable exception is in the design of a branch-guide coupler [2].

It uses ~ of a wavelength instead of the customary ~ wavelength in
designing the symmetrical half-section. However, the overall structure
still has the prime unit of + wavelength.

(a) (b) (c)

Fig. 1. (a) A balanced TL network. (b) Its unbalanced equivalent
network. (c) A triangular TL loop.

leads one to suspect that perhaps the new basic component is

not necessary; perhaps most lossless TL networks can be ade-

quately presented by two basic components only: L and C.

This, in fact, is the case. Under a simple congruent trans-

formation, it will be shown in this paper that Iossless TL net-

works may be presented by a lumped LC network in the

frequency domain s = sinh rfl. z This immediately dissolves the

seemingly contradictory feature discussed previously.

The implication of this s-plane presentation does not end

here. As the resulting network has a completely lumped

presentation, it inherits the entire wealth of classical network

theory. This includes numerous lumped synthesis procedures

developed in the past four decades. Moreover, if we were to

carry each TL network synthesis technique in turn using

s-plane presentation, more often than not we could identify it

with an existing lumped network synthesis technique. This is

discussed to some extent in [5]; it is thus omitted here.

In this paper, it will be demonstrated that s-plane presen-

tation is equally efficient in graph-transformation techniques

[3], [4]. It reduces the number of necessary steps and some-

times carries the sim#ifying process further than previously

deemed possible.

Before this is done, however, the class of networks for

which the new presentation is possible will be studied. This

class of networks is a generalized version of Ikeno’s fiormal

TL networks [6], [10]. It will now be defined in precise terms.

11, NORMAL RESISTOR TL NETWORKS

A. Dejitritiovz

The class of TL networks under consideration here con-

sists of resistors, unit lines, short-circuited and open-circuited

stubs, and multiwire lines. The lines are uniform, lossless, and

of equal length. We assume that TL networks, either in

balanced form or unbalanced form, have an equivalent

ground plane (or equipotential surface). All accessible ports

must have one terminal on the common ground plane. The

resulting n-port network thus behaves like an (n+ 1) terminal

network. The method of admittance matrix addition for paral-

lel *connection is always valid.’ We shall disregard the ground

plane and represent the unit line ‘graphically by a thick line.

The two-port structures such as the one in Fig. 1(a) will be

2 This transformation was first used by Seidal and Rosen [20]. The
application, however, was very different from that intended to be given
here.

8 See Weinberg [7, p. 20] for validity test.
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Fig. 2. Then-port presentation of normal TL networks.

excluded from consideration here because, by itself, the net-

work requires an extra ideal transformer in its unbalanced

presentation [Fig, l(b)], This would complicate the discussion

in later sections.

In the case of a multiwire-line structure, it may be more

convenient to decompose it into an interconnection of short-

circuited stubs and unit lines with positive and negative im-

pedances. This presentation was recently discovered by Sato

and Cristal [3],

Given such a TL network, if we: 1) decompose the multi-

wire line (if any) into the uncoupled form of Sato and Cristal,

2) remove all shunt two-terminal components that are con-

nected to the common ground plane, and 3) short circuit all

other series two-terminal components, we obtain a skeleton

network consisting of positive uncoupled unit lines only. Its

line presentation is a linear graph [8]. This graph may be

hinged, and may contain a self-loop, but it must be connected.

We shall henceforth refer to this graph as the TL graph of

the network.

We now extend Ikeno’s definition and define the following.

De$rvition: A TL network is normal if its TL graph is

connected and contains no loop consisting of odd numbers of

unit lines.

This structural restriction is reflected in the terminal char-

acteristic of a normal TL network. In the following sections,

we shall show that this is, in fact, a necessary and sufficient

condition for its DP immittance to be a PR rational function

in A.

B. n-Pori Presentation of Normal TL Networks

Given a normal TL network, the following procedure will

transform it into a form shown in Fig. 2.

1) Number the nodes consecutively along the TL part of

the network.

2) Move all the odd nodes to one side and the even nodes

to the other side.

The transformation will be successful if the TL network is

normal. This can be readily proven by the graph-theoretical

approach [9], In Fig. 2, network X1 consists of n unit lines,

which may or may not be coupled together. The terminating

networks ‘WI and X2, on the other hand, consist of k-plane

RLC components only. In many cases, they consist simply of

zero-length short-circuiting wires joining the nodes together.

We can now state the first theorem of interest.

Theorem 1: Given a normal TL network with all its acces-

sible ports on one side of XL, the immittance matrix defined

with respect to these ports is a PR rational matrix of X.

In particular, the DP immittance of a normal TL network

at any node is a PR rational function of L This fact was recog-

nized by many authors [10], and the proof has been given for

a less general form of normal TL networks. In its general

form, Theorem 1 can be proven readily by n-port scattering

matrix formulation [11 ], [12]. This is given in Appendix I.

C. Time-Domain Scattering Inter@etation of

Normal TL Networks

Normal TL networks can be distinguished from other TL

networks very distinctly by time-domain scattering matrix

interpretation. If an incident wave of narrow pulse width

( <~) is launched from a sending node, the response at any

receiving node is a sequence of similar pulses of various heights

and polarity. The pulses in the sequence correspond to various

TL routes taken, and their arrival time is proportional to the

route length. If we follow each route and assign a pulse (Pi)

for every route (RJ taken, then every pulse in the response

sequence can be accounted for. This concept is very well

known and needs no further elaboration.

Since the unit lines in the network are commensurate in

length, the pulses will arrive at discrete intervals of time. If

the network is normal and the sending node and receiving

node are at the same side of Xl (Fig. 2), all TL routes joining

these two nodes must consist of even numbers of unit lines. It

follows that pulses must arrive at time t= 2ir, i= O, 1, 2 . . . .

If the sending node and receiving node are at opposite sides of

Xl, then pulses will arrive at odd intervals of time t= (2i+ 1)~,

i=o, 1,2 . . . . In both cases, the response pulses are spaced

even numbers of ~ intervals apart.

If the TL network is not normal, the above phenomenon

is no longer true. This is stated in definite terms as follows.

Theorem 2: If a TL network is not normal, the impulse re-

sponse at any node includes two itipulses of finite energy

spaced odd numbers of ~ intervals apart.

The proof of this theorem is given in Appendix 11. Theo-

rems 1 and 2 are now combined to obtain the main theorem

of interest.

Theorem 3: The driving-point immittance function of a TL

network at any node is a PR rational function of A if and only

if the network is novmal.

Proof: Sufficient proof follows directly from Theorem 1.

To prove the necessary condition, we let z(X) be the rational

immittance function. Substituting in

~ = 1 — e–2rP

1 + e–2To

we can express z(k) in power series form

.
z(h) = ~ Cne–zn”p

n=o

where C. are real coefficients.

Taking the inverse LapLace transform, we obtain

(1)

(2)
,’=0

where 13(t) is a Dirac impulse function. Equation (2) asserts

that the DP impulse responses of the TL network are se-

quences of impulses spaced 2T apart. If the TL network were

to contain an odd TL loop, Theorem 2 would contradict this

assertion. The network, therefore, must be normal.

Q.E.D.

Theorem 3 explains why all practical TL networks de-

signed in the past are normal. The designs were based on

lumped insertion-loss synthesis theory; the DP immittance of

the resulting network must by necessity be rational in A. This
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(a) (b)

Fig. 3. The decomposition of a unit line.

class of networks includes stepped-impedance transformer,

cascade microwave filters, interdigital filter, directional cou-

pler, branch-guide coupler, meander-line network, None of

these networks contain the odd TL loop of Fig. 1(c) as a

subnetwork.

III. LUMPED LC PRESENTATION OF

LOSSLESS TL NETWORKS

In Section II, the properties of normal TL networks are

studied and the motivation behind such a distinction is

shown. In this section, the main aim of this paper will be de-

veloped as follows.

A. Decomposition of Unit Line

In Fig. 3, the unit line is decomposed into four subcompo-

nents. The two ideal transformers with turns ratio ticosh @
. .

are fictitious elements created for mathematical convenience.
The chain matrix of the composite network; given by

()c Zs——
Ys c

(3)

is identical to that of a unit line, thus proving its equivalency

as a two-port. The c and s in (3) are the shorthand notations

for cosh rp and sinh rp, respectively. Note that in the equiva-

lent presentation, s is used as the fundamental frequency in

preference over Richards’ frequency variable X = tanh rp.

Note also that the equivalent network is structurally asym-

metrical. We shall label the node at the capacitance end by a

black dot and call it a capacitance node, and the node at the

inductance end by a small circle and call it an inductance

node. Such a distinction is purely artificial; we can also

validly present the same unit line by the inverted network

of Fig. 3(b).

There are also two alternative ways of presenting TL

stubs. Referring to Fig. 3, a short-circuit stub can be presented

either as an inductor or a parallel LC in cascade with an ideal

transformer, depending on which end is short circuited. Simi-

larly, an open-circuit stub can be presented as a capacitor or

series LC in cascade with an ideal transformer.

By using such an equivalent presentation, any lossless TL

networks consisting of unit lines, multiwire lines, and stubs

can be converted into a lumped L C network imbedded in a

bank of ideal transformers of turns ratio ~~,

B. Separation of Lumped L C Network

The decomposition process appears to complicate the net-

works, were it not for the fact that ideal transformers may

be separated from the circuit. Consider a typical TL junction

shown in Fig. 4, in it the unit lines are presented by their

equivalents with capacitance ends facing one another. Since

the transformers have the same turns ratio, they can be re-

moved and replaced by a single transformer, as shown, If all

ideal transformers were removed in this manner, the resulting

/ (a)

l\ ./’

/’ \
(b)

Fig. 4. Separation of ideal transformer from a TL junction.

network would be a lumped L C network. Note also that the

shunt capacitances and series inductances can be recombined

between adjacent elements, thus greatly simplifying the re-

sulting network. We shall henceforth denote the lumped L C

network by W and call it the s-plane equivalent of the original

TL network%.

Not all lossless TL networks can be converted to a lumped

L C network in the manner described, Any attempt to remove

all the ideal transformers from the equivalent network c)f the

triangular loop in Fig. 1(c) will end in frustration. The fc,llow-

ing theorem states the sufficiency condition for such a presen-

tation to be possible.

Theorem 4: All normal lossless TL networks % have a

lumped s-plane presentation W.

Proof: The proof is simple. Given a lossless normal TL

network with an n-port presentation (Fig. 2, without the re-

sistors), we can label the nodes in ‘WI, as inductance nodes,

and the nodes in %Z as capacitance nodes. When the equiva-

lent networks are substituted according to the node notation,

all ideal transformers will face the same way and can be re-

moved. The remaining network is the lumped LC network

that we sought. Q,E.D.

If we renumber the inductance nodes first (1, 2, . . ., m),

and capacitance nodes next (m+ 1, . . . , n) and let Y and ~

denote the admittance matrices of W and R, respectively,

Theorem 4 can be stated algebraically as follows.

Theorem 4(a): The congruent transformation

Y = N’YN (4)

where N= diag [l/<Z, l/<~, . . 0 , {~, ~~, o . . ] transforms

the matrix ~(~) into a lossless positive real rational matrix

Y(s) in s.

Unlike ordinary congruent transformation (N real), (4)

alters the network structurally rather than impedance-level

wise.

C. ~~ Transformers

The bank of <j transformers in which ‘X is imbedded may

appear to be difficult to handle, However, it does not prevent

us from analyzing or synthesizing a normal TL network St via

its s-plane equivalent W.

In most applications, all terminals except input and out-

put ports are floating terminals. The open-circuited ideal

transformers at these floating terminals can be disregarded.
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TABLE I

NETWORK IDENTITIES

ORIGINAL CIRCUIT

‘1 ‘2

‘T
2

~3

3

1+
2

‘1 ‘2 ~3

3

‘4

4

*
I/c, + l/c2 + I/c,* = o

2

+’

Y2 ‘1 1

Yi
n

J

YO=Y1+Y2 +...... +Y
n

IEEE TRANSACTIONSON MICROWAVE

EQUIVALENT CIRCUIT

‘v

Y, Y2/Yo
2

~1~3/~o 3
Y2Y3/Yo

‘O = ‘I+Y2+Y3

2

1

Y. . Y1+Y2+Y3+Y4

n = I+Y2[YI

:4=: .

‘o- 2

I’Q 02,

.

2

1

, n

Yij = YiYj/Yo

While the remaining ~~ transformers at the input and output

ports cannot be disregarded in this manner, they can be cir-

cumvented as follows.

Consider the two-port case (single input and single out-

put). Equation (4) becomes simply4

(2:)=C:”2) “)
Following the classical insertion-loss synthesis procedure, we

first derive the scattering parameters of ~ algebraically from

a specification of transducer power gain, then obtain the short-

circuited driving-point admittance from these scattering pa-

rameters [16, eq. (79)]

711(V = ‘e(x) – h(h)
go(x) – 1O(N

(6)
go(h) + EO(A) ‘r E.(A) + fio(~)

where

:1(X) = i(A)/i(A)

~(h) = even part of polynomials ~(k)

go(k) = odd part of polynomials ~(~)

etc.

are Belevitch’s notations for scattering parameters of lossless

two-ports terminated in 1-!2 resistors [16].5

4 Assume that port 1 is labeled as a capacitance node and port 2 as an
inductance node.

s Note that 7U (A) and SU(h) are @iofiaz f unctiOns in >e~n if the

transfer function 721(k)may contain an irrational factor <1 – X2.

(a) T.L. network
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s-plane equivalent
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Apply Y-A

transformation to
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Fig. 5. Equivalent circuit derivation.

,--+--J-
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2

22 3
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gyos/ ( I+s?
;:C;;:4 u .
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Fig. 6, Equivalent circuit derivation.

The s-plane network ‘W can now be realized from (5), i.e.,

from

yll(s) = yll(N/c. (7)

Finally, ~ is recovered from ‘W by a reverse decomposition

process. In this way, the v’; transformers are circumvented

in the realization process.

The details of this synthesis technique have been pre-

sented in a slightly different form in [5]; therefore, they will

be omitted here. In this paper, we are mainly concerned with

another aspect of s-plane presentation, viz., the graph-ana-

lytical techniques of TL networks via their s-plane equiva-

lents.

IV. GRAPH-TRANSFORMATION TECHNIQUE IN S-PLANE

Because of their unique structure, TL networks in the past

tended to develop graph-transformation techniques of their

own. Examples are Kuroda identities, and those by Sato and

Cristal [3] and Pang [13].

Since the s-plane network W consists of only two basic

components as compared to three in k-plane presentation, one

would expect the new presentation to be more amiable to

graph-transformation technique. This, in fact, is the case, as

will be illustrated by a few examples. Some examples in [3]

will be reconsidered here for comparison purposes. In all the

examples, the final s-plane equivalents were obtained by the

procedure as follows.

1) Label the nodes on the TL network alternatively as

capacitance nodes and inductance nodes.

2) Substitute in the lumped LC equivalent (Fig. 3, without

the transformers) for each component.
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‘m’
C3

DEFINE IYI = Y,lY22-Y,22t Y1 = Y,+Y22> Y~~ = Y2 + Y.’~,

D = Y,, Y, Y2+(Y,+Y2)IYI

L, = Y22Y2/D,L2 = Y, Y1l/D, L3 = Y2~Y~11Yl /( DY, ~2) + Y1~/Y,z2

C3 = Y,’*/yII, co = (Y,, Y*+l Yl)hII

s-PLANE EQUIVALENT

‘m
3

4

1

. T

OPERATION

ELIMINATE

NODE 2 B’i

STEP II

ELIMINATE

CAPACITANCE LOOP

BY STEP IV

APPLY L-Y

TRANS FORMAT10N

TO INDUCTANCE

LOOP ON L. H.S.

APPLY STEP Ill

TO BOTfl SIDE OF

MI O-SER [ES ARM

APPLY A-Y

TRANS FORMAT10N

TO TOP

INDUCTANCE LOOP

RESULT

4

‘T

[1

. 3

. —

# I

(a) T.L. network (b) s-plane equivalent

s-plane equivalent

~

.l,&
1 3

‘ t-j,,

‘~z
—

opemt im res.1 t

Apply Y-b 1

tra.s.format ion

to eliminate VI

node 3 L’

::~;;:on ‘m~

i nd. ctance

I cop

Fig. 8. Equivalent circuit derivation.

tion twice._Attempts by the author to simplify the network by

existing graph-transformation technique failed. The :failure

seems to stem from the fact that there is no inductance con-

veniently nearby, which is a prior requirement for Sate’s

transformation (see [21 ]). Without the graph-transformation

technique shown here, the derivation of two-port parameters

of the given network by any algebraic mean is a formidable

task.

In most examples above, the number of operations re-

quired to arrive at the final result is about half of thc~se re-

quired before [3]. The number of basic identities employed is

also half of the original number required (Table I).

V. CONCLUSION
Fig. 7. Equivalent circuit derivation.

3) Apply various transformations listed in Table I.

It is interesting to compare the identities in Table I with

their counterparts in [3]. Steps 1 and 2 [3, table I ] are similar

to the lumped Y–A transformation (step I); steps 4 and 5

[3, table I] are similar to the “cross-diamond” transformation

(step II); Kuroda identities [3, table II, steps 2 and 6] are

similar to the, Norton transformation (step III). The T–pi

transformation in step IV of this paper shows the parallel and

series form of Darlington C section, of which the network in

[3, table II, step 1] are special cases. Finally, Sate’s two uni-

versal transformations [21 ] are similar to the node elimination

of step V, of which steps I and II are special cases. These

identities are commonplace in the context of lumped analysis,

but nontrivial in the form of TL networks.

Figs. 5 and 6 in this paper consider the same examples as

shown in [3, figs. 5 and 7]. Both s-plane equivalents are ob-

tained by a single Y–A transformation. Note that we label 1

and 2 as capacitance nodes in Fig. 5, while 1 and 2 are labeled

as inductance nodes in Fig. 6. In Fig. 7,6 the Brune section of

Rhodes, Scalan, and Levy is transformed into its s-plane

equivalent. This is not a trivial exercise.

Fig. 8 shows a simple double-loop two-port network, Its

s-plane equivalent was obtained by applying Y–A transforma-

6 Note the typographical error in the expression for YO [3, fig. 8]. YO
and CiI should be identical.

Apart from simplifying the graph transformation,, the

s-plane equivalents shown in Section IV have the added ad-

vantage that they are in mid-series low-pass ladder form, with

all their element values positive. The networks, therefore, can

be synthesized directly by the classical zero-shifting pro-

cedure [17].

The only restriction for the s-plane presentation to be

viable is that TL networks must be normal. It has been shown

that this is also the condition for driving-point immittance to

be a positive real rational function in X (Theorem 3). This

condition can always be met if the TL network is designed by

insertion-loss method. (See footnotes 5 and 6.)

In summary, we have shown the following.

1) The s-plane presentation is possible for a sufficiently

general class of networks of interest.

2) It simplifies graph-transformation techniques arid re-

veals additional physical insights.

As such, the s-plane presentation thus constitutes aln ef-

fective new tool for analysis and synthesis of TL networks.

APPENDIX I

PROOF OF THEOREM 1

It is clear that Theorem 1 would follow if it could be slhown

that Y1 and Yi are rational PR matrices in L YI(YZ) is the

n-port DP admittance matrix looking into one side of Wz

with the other side terminated in 3Z2 (3Z1), as shown in Fig. 2.

Because of symmetry, we need only to show one admittance

matrix (YJ to be rational PR.
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Let the n Xtz matrix ZO denote the characteristic impedance

matrix of n unit lines of Wt. This characteristic impedance

matrix must be positive definite, but not necessarily diagonal,

as the n unit lines may be coupled.

The 2n X 2n scattering matrix of ‘X1, normalizing with re-

spect to 2n X 2n positive definite matrix ZO+ZO, is

SIl S12

s,(k) =

() Sll S22

( 0. ~–rP 1~
. )...e–’p 1. 0.

(8)

where all the submatrices in (8) are of dimension n Xn.7

Since %2 is a lumped RLC network in A-plane, its nXn

scattering matrix s.2, normalizing with respect to So, must be

a bounded real rational matrix of k. It can also be shown that

Sz always exists.

Consider the n-port network consisting of Wt and ‘3& in

cascade. Its scattering matrix Stz, normalizing with respect to

2., is given by [11, eq. 3-20, p. 59]

St,(k) = Sll + S12S2(1. – S22S2)–1S21

. ~2TPs2

l–x
—— s,(~). (9)

‘l+A

Equation (9), together with the fact that SZ(k) is a rational

bounded real matrix, implies the following.

1) SZ20) is a rational matrix in k.

2) Sri(A) is homomorphic in Re k >0.

3) 1. – sl,*(jcd)s,2(jco)= 1. – s2*(jcd)s2(j&r)
>0, VCJJ.

By the fundamental theorem [11, p. 98], it follows that Slz(k)

is also a rational bounded real matrix in k. This, in turn, im-

plies that

YI = 20-1/2(1.– StZ)(l. + S2J-*ZO-1’2

must be a PR rational function in h.

The proof is thus completed.

APPENDIX II

PROOF OF THEOREM 2

For simplicity, we shall first limit our discussion to TL

networks consisting of unit lines only; the main emphasis of

Theorem 2 is in the existence of the two pulses. Towards this

end, we need only to show the following.

a) Between any pair of sending and receiving nodes, there

is at least one route consisting of an even number of unit lines

(even route) and one route consisting of an odd number of

unit lines (odd route).

7 The nondiagonal nature of terminating the impedance matrix does
not limit our formulation in any way. Interested readers are referred to
[12, p. 266] for justification.

Fig. 9. Odd

&
Odd

loop

/ir – - –,:

.4’ ‘A
x.

Sendlna Receivina
node - node -

Odd route

—+— — Even route

and even routes of nonnormal TL network.

b) Among those pulses taking even routes, there is at least

one pulse that will survive possible cancellation on its arrival.

Similarly, there is at least one surviving pulse taking the odd

route.

Proof: Part a) is simple. If the TL network is not normal,

there exists an odd loop in its TL graph. Since the graph is

connected, there is at least one TL path joining the odd loop

to the pair of sending and receiving nodes. If this route is

even, then the other route forming the odd loop must be odd,

and vice versa. This argument is shown graphically in Fig. 9.

To prove part b), we first note that the first pulse to arrive

at the receiving node takes the shortest route. It cannot be

reflected on its ways because it can only delay its arrival time

by 27. Since the transmission coefficient of any idealized

junction is always @ositive, the pulse which takes the route

will always preserve its polarity. If the shortest route is non-

unique, pulses taking different routes of the same route length

would reenforce one another on arrival because of the same

polarity. We can therefore argue that pulses taking the

shortest even route and shortest odd route will both survive.

The proof is thus completed.

If k-plane RL C elements and multiwire lines are now in-

cluded in the TL network, the theorem is still valid. In the

proof above, we deal only with the first arrival pulses. Since

pulses can pass through series or shunt RLC elements instan-

taneously without changing their polarity, the proof is still

valid for the enlarged class of TL networks.
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Design of Microwave Filters by Sine-Plane Approach

KHEE K. PANG

MMrac+Using a new sine-plane approach [7], an
design ~rocedure for microwave filters is developed.

easy-to-us e
The design

form-ula~ are very simple (Tables I-III) and are valid for filters of
wide bandwidths (Section V). Furthermore, the new design offers
many advantages over other presently available designs.

I. INTRODUCTION

M

ICROWAVE filters can be designed using two dif-

ferent approaches. They can be designed by approxi-

mation equations [1 ]– [3 ], and they can be designed

by exact synthesis methods [4], [5]. Both approaches have

their own merits. Explicit formulas are given in Cohn [1],

Matthaei [2], and Cristal [3]; their design procedures are

therefore easy to use. The design method presented by

Wenzel [4] and Mumford [5] is exact, but this is achieved at

the expense of greater numerical complexity.

With reference to the first approach, i.e., designing filters

by approximation equations, Dishal [6] raised the following

question: Why should one waste the space to put in rods #O

and #(n + 1), the only purpose of which is to properly couple

the resistive generator and resistive load to the input–output

resonances, respectively? This question has not been answered

satisfactorily for parallel-coupled filters of wide bandwidths.

Using the new sine-plane approach presented in the com-

panion paper [7], a new set of design equations will be derived

in this paper. Apart from dissolving the objection raised

Manuscript received February 26, 1973; revised June 6, ‘1973.
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above, the new design equations offer other advantages.

These are discussed in the text of the paper.

II. THEORY

The theory derives mainly from the graphical transforma-

tion technique described in [7]. Through a series of trans-

formations, it will be shown that microwave bandpass filter

networks can be identified with lumped prototype filters of

standard designs.

Consider the two basic bandpass filter structures in Fig. l.l

They are shown in Richards’ A-plane presentation,2 and thus

implicitly assumed that the networks consist of open-circuit

stubs, short-circuit stubs, and unit transmission lines, all of

which have the same electrical length. Note that all connect-

I It can be shown that the interdigital filter and parallel-coupled filter
are equivalent to one of the two network structures.

ZX = tanh 7P, where r is the time taken for a pulse to traverse the unit
length of transmission line, and p = a +jos is the complex frequency.
Later, s and c will be used to denote sinh ‘@ and cosh rp, respectively.


