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Normal ‘Transmission-Line Networks and Their Lumped
LC Presentation

KHEE K. PANG

Abstract—A previous result [5] is extended and a new presenta-
tion is described for Richards’ transmission-line (TL) networks. The
new presentation is in a lumped LC form; therefore, classical analysis
and synthesis techniques are directly applicable.

The class of networks for which this presentation is possible is
studied in detail. This class of networks, called normal TL networks,
is found to be a necessary and sufficient condition for driving-point
immittance functions to be rational positive real functions of
A=tanh 5.

The effectiveness of this representation is further demonstrated
by applying it to graph-transformation analysis method. It simplifies
the procedure considerably and reveals additional physical insight
into the TL network.

1. INTRODUCTION

ICHARDS' resistor-transmission-line (TL) network
R [1] is essentially a hybrid distributed and lumped net-
work. The structure is distributed, but in the analysis,
the TL junctions are idealized into nodes. In frequency plane
A=tanh 7p, the TL stub may be regarded as a lumped induc-
tor or capacitor; but as a two-port, a unit length of TL
(unit line) is not a lumped component. The irrational factor
4/1=? in its transfer function renders it impossible to be
represented by finite lumped network.

If the unit length of TL is subdivided and N =tanh 7p/2
regarded as the fundamental frequency, a unit line can be
presented by a lattice LC section (alternatively, a Darlington
C section) [1]. It is therefore possible to present Richards’
TL networks completely by lumped components. However,
such a presentation complicates the network structure and
doubles the number of elements in the presentation. This is not
acceptable to the circuit designer. To date, most TL networks
have been designed using A as the fundamental frequency
variable.l

Thus earlier workers were resigned to the idea and
treated the unit line as a new “basic” component. Numerous
new analytic and synthesis techniques were discovered which
could accommodate this new element. Accompanying these, a
parallel set of TL network theories has also been developed in
order to justify the validity of each synthesis process.

Closer examination of this treatment reveals a disturbing
feature. On the one hand, lossless TL networks consist of
three basic components: L, C, and the unit line. On the other
hand, the driving point (DP) immittance functions of most
TL networks are positive real (PR) rational in A, in no way
different from those of a two-component lumped LC network.
The new basic element, the sole existence of which distin-
guishes a TL network from a lumped network, does not seem
to leave any imprint in the DP immittance functions. This
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1 A notable exception is in the design of a branch-guide coupler [2].
It uses ¥ of a wavelength instead of the customary % wavelength in
designing the symmetrical half-section. However, the overall structure
still has the prime unit of } wavelength,
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leads one to suspect that perhaps the new basic component is
not necessary; perhaps most lossless TL networks can be ade-
quately presented by two basic components only: L and C.

This, in fact, is the case. Under a simple congruent trans-
formation, it will be shown in this paper that lossless TL net-
works may be presented by a lumped LC network in the
frequency domain s =sinh 4.2 This immediately dissolves the
seemingly contradictory feature discussed previously.

The implication of this s-plane presentation does not end
here. As the resulting network has a completely lumped
presentation, it inherits the entire wealth of classical network
theory. This includes numerous lumped synthesis procedures
developed in the past four decades. Moreover, if we were to
carry each TL network synthesis technique in turn using
s-plane presentation, more often than not we could identify it
with an existing lumped network synthesis technique. This is
discussed to some extent in [5]; it is thus omitted here.

In this paper, it will be demonstrated that s-plane presen-
tation is equally efficient in graph-transformation techniques
[3], [4]. It reduces the number of necessary steps and some-
times carries the simplifying process further than previously
deemed possible.

Before this is done, however, the class of networks for
which the new presentation is possible will be studied. This
class of networks is a generalized version of Tkeno’s normal
TL networks [6], [10]. It will now be defined in precise terms.

II. NorMAL REsisTor TL NETWORKS
A. Definition

The class of TL networks under consideration here con-
sists of resistors, unit lines, short-circuited and open-circuited
stubs, and multiwire lines. The lines are uniform, lossless, and
of equal length. We assume that TL networks, either in
balanced form or unbalanced form, have an equivalent
ground plane (or equipotential surface). All accessible ports
must have one terminal on the common ground plane. The
resulting #-port network thus behaves like an (#n+1) terminal
network. The method of admittance matrix addition for paral-
lel-connection is always valid.®? We shall disregard the ground
plane and represent the unit line graphically by a thick line.
The two-port structures such as the one in Fig. 1(a) will be

? This transformation was first used by Seidal and Rosen [20]. The
application, however, was very different from that intended to be given
here.

3 See Weinberg [7, p. 20] for validity test.
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Fig. 2. The n-port presentation of normal TL networks.

excluded from consideration here because, by itself, the net-
work requires an extra ideal transformer in its unbalanced
presentation [Fig. 1(b)]. This would complicate the discussion
in later sections.

In the case of a multiwire-line structure, it may be more
convenient to decompose it into an interconnection of short-
circuited stubs and unit lines with positive and negative im-
pedances. This presentation was recently discovered by Sato
and Cristal [3].

Given such a TL network, if we: 1) decompose the multi-
wire line (if any) into the uncoupled form of Sato and Cristal,
2) remove all shunt two-terminal components that are con-
nected to the common ground plane, and 3) short circuit all
other series two-terminal components, we obtain a skeleton
network consisting of positive uncoupled unit lines only. Its
line presentation is a linear graph [8]. This graph may be
hinged, and may contain a self-loop, but it must be connected.
We shall henceforth refer to this graph as the TL graph of
the network.

We now extend Ikeno’s definition and define the following.

Definition: A TL network is normal if its TL graph is
connected and contains no loop consisting of odd numbers of
unit lines.

This structural restriction is reflected in the terminal char-
acteristic of a normal TL network. In the following sections,
we shall show that this is, in fact, a necessary and sufficient
condition for its DP immittance to be a PR rational function
in A,

B. n-Port Presentation of Normal TL Networks

Given a normal TL network, the following procedure will
transform it into a form shown in Fig. 2.

1) Number the nodes consecutively along the TL part of
the network.

2) Move all the odd nodes to one side and the even nodes
to the other side.

The transformation will be successful if the TL network is
normal. This can be readily proven by the graph-theoretical
approach [9]. In Fig. 2, network 9; consists of # unit lines,
which may or may not be coupled together. The terminating
networks 91 and 9, on the other hand, consist of N-plane
RLC components only. In many cases, they consist simply of
zero-length short-circuiting wires joining the nodes together.
We can now state the first theorem of interest.

Theorem 1: Given a normal TL network with all its acces-
sible ports on one side of 9;, the immittance matrix defined
with respect to these ports is a PR rational matrix of \.

In particular, the DP immittance of a normal TL network
at any node is a PR rational function of X, This fact was recog-
nized by many authors [10}, and the proof has been given for
a less general form of normal TL networks. In its general
form, Theorem 1 can be proven readily by n-port scattering
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matrix formulation [11], [12]. This is given in Appendix I.

C. Time-Domain Scattering Interpretation of
Normal TL Networks

Normal TL networks can be distinguished from other TL
networks very distinctly by time-domain scattering matrix
interpretation. If an incident wave of narrow pulse width
(<7) is launched from a sending node, the response at any
receiving node is a sequence of similar pulses of various heights
and polarity. The pulses in the sequence correspond to various
TL routes taken, and their arrival time is proportional to the
route length. If we follow each route and assign a pulse (P;)
for every route (R;) taken, then every pulse in the response
sequence can be accounted for. This concept is very well
known and needs no further elaboration.

Since the unit lines in the network are commensurate in
length, the pulses will arrive at discrete intervals of time. If
the network is normal and the sending node and receiving
node are at the same side of ¢; (Fig. 2), all TL routes joining
these two nodes must consist of even numbers of unit lines. It
follows that pulses must arrive at time t=247,¢=0,1,2 - - -,
If the sending node and receiving node are at opposite sides of
91;, then pulses will arrive at odd intervals of time ¢ = (2¢41)7,
1=0, 1,2 - - - . In both cases, the response pulses are spaced
even numbers of 7 intervals apart.

If the TL network is not normal, the above phenomenon
is no longer true. This is stated in definite terms as follows.

Theorem 2: If a TL network is not normal, the impulse re-
sponse at any node includes two impulses of finite energy
spaced odd numbers of 7 intervals apart.

The proof of this theorem is given in Appendix II. Theo-
rems 1 and 2 are now combined to obtain the main theorem
of interest.

Theorem 3: The driving-point immittance function of a TL
network at any node is a PR rational function of X if and only
if the network is normal.

Proof: Sufficient proof follows directly from Theorem 1.
To prove the necessary condition, we let z(\) be the rational
immittance function. Substituting in

1 — ¢
A= ————
14 eg?e

we can express z(\) in power series form
2(\) = 2 Coe 2o (1)
n=0

where C, are real coefficients.
Taking the inverse Laplace transform, we obtain

£71z(\) = i Cad(t — 2m7) (2)

n=0

where §(¢) is a Dirac impulse function. Equation (2) asserts
that the DP impulse responses of the TL network are se-
quences of impulses spaced 27 apart. If the TL network were
to contain an odd TL loop, Theorem 2 would contradict this
assertion. The network, therefore, must be normal.
Q.E.D.
Theorem 3 explains why all practical TL networks de-
signed in the past are normal. The designs were based on
lumped insertion-loss synthesis theory; the DP immittance of
the resulting network must by necessity be rational in A. This



PANG: TRANSMISSION-LINE NETWORKS

Y Ve 1 sfY Ve 1
O——
= =
(a) (b)
Fig. 3. The decomposition of a unit line.

class of networks includes stepped-impedance transformer,
cascade microwave filters, interdigital filter, directional cou-
pler, branch-guide coupler, meander-line network. None of
these networks contain the odd TL loop of Fig. 1(c) as a
subnetwork.

III. LumPED LC PRESENTATION OF
LossLEss TL NETWORKS

In Section II, the properties of normal TL networks are
studied and the motivation behind such a distinction is
shown. In this section, the main aim of this paper will be de-
veloped as follows.

A. Decomposiiion of Unit Line

In Fig. 3, the unit line is decomposed into four subcompo-
nents. The two ideal transformers with turns ratio v/cosh rp
are fictitious elements created for mathematical convenience.
The chain matrix of the composite network, given by

o= (7 o)l DG D %)

c Zs
(. D) ©

Vs ¢
is identical to that of a unit line, thus proving its equivalency
as a two-port. The ¢ and s in (3) are the shorthand notations
for cosh 7p and sinh 79, respectively. Note that in the equiva-
lent presentation, s is used as the fundamental frequency in
preference over Richards’ frequency variable A=tanh 5.
Note also that the equivalent network is structurally asym-
metrical. We shall label the node at the capacitance end by a
black dot and call it a capacitance node, and the node at the
inductance end by a small circle and call it an inductance
node. Such a distinction is purely artificial; we can also
validly present the same unit line by the inverted network
of Fig. 3(b).

There are also two alternative ways of presenting TL
stubs. Referring to Fig. 3, a short-circuit stub can be presented
either as an inductor or a parallel LC in cascade with an ideal
transformer, depending on which end is short circuited. Simi-
larly, an open-circuit stub can be presented as a capacitor or
series L in cascade with an ideal transformer.

By using such an equivalent presentation, any lossless TL
networks consisting of unit lines, multiwire lines, and stubs
can be converted into a lumped LC network imbedded in a
bank of ideal transformers of turns ratio v/c.

B. Separation of Lumped LC Network

The decomposition process appears to complicate the net-
works, were it not for the fact that ideal transformers may
be separated from the circuit. Consider a typical TL junction
shown in Fig. 4, in it the unit lines are presented by their
equivalents with capacitance ends facing one another. Since
the transformers have the same turns ratio, they can be re-
moved and replaced by a single transformer, as shown. If all
ideal transformers were removed in this manner, the resulting

603

(b)

Fig. 4. Separation of ideal transformer from a TL junction.

network would be a lumped LC network. Note also that the
shunt capacitances and series inductances can be recombined
between adjacent elements, thus greatly simplifying the re-
sulting network. We shall henceforth denote the lumped LC
network by 9 and call it the s-plane equivalent of the original
TL network 9.

Not all lossless TL networks can be converted to a lumped
LC network in the manner described. Any attempt to remove
all the ideal transformers from the equivalent network of the
triangular loop in Fig. 1(c) will end in frustration. The follow-
ing theorem states the sufficiency condition for such a presen-
tation to be possible.

Theorem 4: All normal lossless TL networks 9T have a
lumped s-plane presentation 9.

Proof: The proof is simple. Given a lossless normal TL
network with an n-port presentation (Fig. 2, without the re-
sistors), we can label the nodes in 9, as inductance nodes,
and the nodes in M, as capacitance nodes. When the equiva-
lent networks are substituted according to the node notation,
all ideal transformers will face the same way and can be re-
moved. The remaining network is the lumped LC network
that we sought. Q.E.D.

If we renumber the inductance nodes first (1, 2, - - -, m),
and capacitance nodes next (m~+1, -+ -, #) and let Y and ¥
denote the admittance matrices of 9 and 9, respectively,
Theorem 4 can be stated algebraically as follows.

Theorem 4(a): The congruent transformation

Y= NYN (4)
where N=diag [1/v/¢, 1/4/¢, * * + , V¢, Ve, + - + | transforms

the matrix Y(A) into a lossless positive real rational matrix
¥Y(s) in s.

Unlike ordinary congruent transformation (N real), (4)
alters the network structurally rather than impedance-level
wise.

C. V¢ Transformers

The bank of v/¢ transformers in which 9T is imbedded may
appear to be difficult to handle. However, it does not prevent
us from analyzing or synthesizing a normal TL network 9T via
its s-plane equivalent 9.

In most applications, all terminals except input and out-
put ports are floating terminals. The open-circuited ideal
transformers at these floating terminals can be disregarded.
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TABLE I

NETWORK IDENTITIES

No. ORIGINAL CIRCUIT EQUIVALENT CIRCUIT

YO = Y'|+YZ+Y3+YL,

n= 1+Y2/Y]

Lt

= C 3
c 12 c,

—0 2!

o

<L
1/6) + 1/C; +1/Cyy = 0

While the remaining 4/¢ transformers at the input and output
ports cannot be disregarded in this manner, they can be cir-
cumvented as follows.

Consider the two-port case (single input and single out-
put). Equation (4) becomes simply*

Y11 V12 V1€ Vi
< ) - <_ y ' (5)
Vo1 Yoo Vo1 C Y2
Following the classical insertion-loss synthesis procedure, we
first derive the scattering parameters of 9 algebraically from
a specification of transducer power gain, then obtain the short-

circuited driving-point admittance from these scattering pa-
rameters [16, eq. (79)]

.00 — 2O\ o 2o\ — ho(N)
go(N) + (V) BN + ho(N)

yu\) = (6)

where

S =H /80 i
g.(\) =even part of polynomials g(\)
go(\) =odd part of polynomials g(\)
etc.

are Belevitch’s notations for scattering parameters of lossless
two-ports terminated in 1-Q resistors [16].5

4 Assume that port 1 is labeled as a capacitance node and port 2 as an
inductance node.
5 Note that 1(\) and Su(M) are rational functions in A even if the

transfer function §u(A\) may contain an irrational factor Vv 1-22
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The s-plane network 9 can now be realized from (5), i.e.,
from

yu(s) = yu(\)/ec. (N

Finally, U is recovered from 3 by a reverse decomposition
process. In this way, the 4/¢ transformers are circumvented
in the realization process.

The details of this synthesis technique have been pre-
sented in a slightly different form in [5]; therefore, they will
be omitted here. In this paper, we are mainly concerned with
another aspect of s-plane presentation, viz., the graph-ana-
lytical techniques of TL networks via their s-plane equiva-
lents.

IV. GRAPH-TRANSFORMATION TECHNIQUE IN s-PLANE

Because of their unique structure, TL networks in the past
tended to develop graph-transformation techniques of their
own. Examples are Kuroda identities, and those by Sato and
Cristal [3] and Pang [13].

Since the s-plane network 9T consists of only two basic
components as compared to three in A-plane presentation, one
would expect the new presentation to be more amiable to
graph-transformation technique. This, in fact, is the case, as
will be illustrated by a few examples. Some examples in [3]
will be reconsidered here for comparison purposes. In all the
examples, the final s-plane equivalents were obtained by the
procedure as follows.

1) Label the nodes on the TL network alternatively as
capacitance nodes and inductance nodes.

2) Substitute in the lumped LC equivalent (Fig. 3, without
the transformers) for each component.
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3) Apply various transformations listed in Table I.

[t is interesting to compare the identities in Table I with
their counterparts in [3]. Steps 1 and 2 [3, table 1] are similar
to the lumped Y-A transformation (step I); steps 4 and 5
[3, table I] are similar to the “cross—diamond” transformation
(step II); Kuroda identities [3, table II, steps 2 and 6] are
similar to the Norton transformation (step III). The T—pi
transformation in step I'V of this paper shows the parallel and
series form of Darlington C section, of which the network in
[3, table II, step 1] are special cases. Finally, Sato’s two uni-
versal transformations [21] are similar to the node elimination
of step V, of which steps I and II are special cases. These
identities are commonplace in the context of lumped analysis,
but nontrivial in the form of TL networks.

Figs. 5 and 6 in this paper consider the same examples as
shown in [3, figs. 5 and 7]. Both s-plane equivalents are ob-
tained by a single Y-A transformation. Note that we label 1
and 2 as capacitance nodes in Fig. 5, while 1 and 2 are labeled
as inductance nodes in Fig. 6. In Fig. 7,5 the Brune section of
Rhodes, Scalan, and Levy is transformed into its s-plane
equivalent. This is not a trivial exercise.

Fig. 8 shows a simple double-loop two-port network. Its
s-plane equivalent was obtained by applying Y-A transforma-

% Note the typographical error in the expression for ¥, [3, fig. 8]. ¥y
and Cy should be identical.

tion twice..Attempts by the author to simplify the network by
existing graph-transformation technique failed. The failure
seems to stem from the fact that there is no inductance con-
veniently nearby, which is a prior requirement for Sato’s
transformation (see [21]). Without the graph-transformation
technique shown here, the derivation of two-port parameters
of the given network by any algebraic mean is a formidable
task.

In most examples above, the number of operations re-
quired to arrive at the final result is about half of those re-
quired before [3]. The number of basic identities employed is
also half of the original number required (Table 1).

V. CoNCLUSION

Apart from simplifying the graph transformation, the
s-plane equivalents shown in Section IV have the added ad-
vantage that they are in mid-series low-pass ladder form, with
all their element values positive. The networks, therefore, can
be synthesized directly by the classical zero-shifting pro-
cedure [17].

The only restriction for the s-plane presentation to be
viable is that TL networks must be normal. It has been shown
that this is also the condition for driving-point immittance to
be a positive real rational function in A (Theorem 3). This
condition can always be met if the TL network is designed by
insertion-loss method. (See footnotes 5 and 6.)

In summary, we have shown the following.

1) The s-plane presentation is possible for a sufficiently
general class of networks of interest.

2) It simplifies graph-transformation techniques and re-
veals additional physical insights.

As such, the s-plane presentation thus constitutes an ef-
fective new tool for analysis and synthesis of TL networks.

ArPENDIX |
Proor oF THEOREM 1

Itis clear that Theorem 1 would follow if it could be shown
that ¥, and Y, are rational PR matrices in A. ¥Yi(¥,) is the
n-port DP admittance matrix looking into one side of 9(;
with the other side terminated in 9%, (9,), as shown in Fig. 2.
Because of symmetry, we need only to show one admittance
matrix (¥;) to be rational PR.



606

Let the #n X7 matrix Zy denote the characteristic impedance
matrix of # unit lines of 9;. This characteristic impedance
matrix must be positive definite, but not necessarily diagonal,
as the # unit lines may be coupled.

The 27X 2#n scattering matrix of 9%, normalizing with re-
spect to 21 X2#n positive definite matrix Zo+ 2y, is

SiA) = (

Sm)
S‘Zl 522
0, e ?1,
- . 8
(e“””ln 0. ) ®

where all the submatrices in (8) are of dimension # X#n.”

Since I is a lumped RLC network in A-plane, its #Xn
scattering matrix S, normalizing with respect to Sy, must be
a bounded real rational matrix of X. It can also be shown that
S, always exists.

Consider the n-port network consisting of I; and 9, in
cascade. Its scattering matrix Sjs, normalizing with respect to
Zy, is given by [11, eq. 3-20, p. 59]

Sz2(>\) = Su + S12S2(1n — S2282)_1S21
627pS2
1 —A

PR S>(M). 9

511

Equation (9), together with the fact that S;(\) is a rational
bounded real matrix, implies the following.

1) 8i:(\) is a rational matrix in X

2) Si;2(\) is holomorphic in Re A > 0.

3) 1, — Sp*(jw)Su(jw) = 1. — Sy*(jw) Sa(jw)
> G, V.

By the fundamental theorem [11, p. 98], it follows that S;(\)
is also a rational bounded real matrix in A, This, in turn, im-
plies that

Yy = Zy12(1, — Sip)(1, + Sp)~1 212

must be a PR rational function in A.
The proof is thus completed.

AppENDIX 11
PrOOF OF THEOREM 2

For simplicity, we shall first limit our discussion to TL
networks consisting of unit lines only; the main emphasis of
Theorem 2 is in the existence of the two pulses. Towards this
end, we need only to show the following.

a) Between any pair of sending and receiving nodes, there
is at least one route consisting of an even number of unit lines
(even route) and one route consisting of an odd number of
unit lines (odd route).

7 The nondiagonal nature of terminating the impedance matrix does
not limit our formulation in any way. Interested readers are referred to
[12, p. 266] for justification.
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Fig. 9. 0Odd and even routes of nonnormal TL network.

b) Among those pulses taking even routes, there is at least
one pulse that will survive possible cancellation on its arrival.
Similarly, there is at least one surviving pulse taking the odd
route.

Proof : Part a) is simple. If the TL network is not normal,
there exists an odd loop in its TL graph. Since the graph is
connected, there is at least one TL path joining the odd loop
to the pair of sending and receiving nodes. If this route is
even, then the other route forming the odd loop must be odd,
and vice versa. This argument is shown graphically in Fig. 9.

To prove part b), we first note that the first pulse to arrive
at the receiving node takes the shortest route. It cannot be
reflected on its way® because it can only delay its arrival time
by 27. Since the transmission coefficient of any idealized
junction is always positive, the pulse which takes the route
will always preserve its polarity. If the shortest route is non-
unique, pulses taking different routes of the same route length
would reenforce one another on arrival because of the same
polarity. We can therefore argue that pulses taking the
shortest even route and shortest odd route will both survive.
The proof is thus completed.

If A-plane RLC elements and multiwire lines are now in-
cluded in the TL network, the theorem is still valid. In the
proof above, we deal only with the first arrival pulses. Since
pulses can pass through series or shunt RLC elements instan-
taneously without changing their polarity, the proof is still
valid for the enlarged class of TL networks.
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Design of Microwave Filters by Sine-Plane Approach

KHEE K. PANG

Abstract—Using a new sine-plane approach [7], an easy-to-use
design procedure for microwave filters is developed. The design
formulas are very simple (Tables I~III) and are valid for filters of
wide bandwidths (Section V). Furthermore, the new design offers
many advantages over other presently available designs.

I. INTRODUCTION

ICROWAVE filters can be designed using two dif-
M ferent approaches. They can be designed by approxi-

mation equations [1]-[3], and they can be designed
by exact synthesis methods [4], [5]. Both approaches have
their own merits. Explicit formulas are given in Cohn [1],
Matthaei [2], and Cristal [3]; their design procedures are
therefore easy to use. The design method presented by
Wenzel [4] and Mumford [5] is exact, but this is achieved at
the expense of greater numerical complexity.

With reference to the first approach, i.e., designing filters
by approximation equations, Dishal [6] raised the following
question: Why should one waste the space to put in rods #0
and #(n-+1), the only purpose of which is to properly couple
the resistive generator and resistive load to the input-output
resonances, respectively? This question has not been answered
satisfactorily for parallel-coupled filters of wide bandwidths.

Using the new sine-plane approach presented in the com-
panion paper [7], a new set of design equations will be derived
in this paper. Apart from dissolving the objection raised
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Fig. 1. Basic bandpass networks.

above, the new design equations offer other advantages.
These are discussed in the text of the paper.

II. THEORY

The theory derives mainly from the graphical transforma-
tion technique described in [7]. Through a series of trans-
formations, it will be shown that microwave bandpass filter
networks can be identified with lumped prototype filters of
standard designs.

Consider the two basic bandpass filter structures in Fig. 1.1
They are shown in Richards’ A-plane presentation,? and thus
implicitly assumed that the networks consist of open-circuit
stubs, short-circuit stubs, and unit transmission lines, all of
which have the same electrical length. Note that all connect-

1 It can be shown that the interdigital filter and parallel-coupled filter
are equivalent to one of the two network structures.

2 \=tanh 7p, where 7 is the time taken for a pulse to traverse the unit
length of transmission line, and p=o0-+jw is the complex frecuency.
Later, s and ¢ will be used to denote sinh 7p and cosh 7p, respectively.



